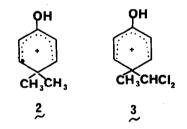
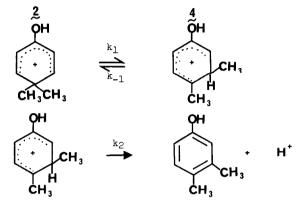
THE NATURE OF THE RATE-DETERMINING STEP IN THE DIENONE-PHENOL REARRANGEMENT


by V. P. Vitullo and N. Grossman

Department of Chemistry University of Maryland Baltimore County Baltimore, Maryland 21228


(Received in USA 17 February 1970; received in UK for publication 16 March 1970)

We wish to report several experiments which unequivocally establish the nature of the rate determining step in the dienone-phenol rearrangement.¹

In concentrated acid solutions a significant fraction of 4,4-dimethylcyclohexadienone $(1)^2$ exists as its oxygen protonated conjugate acid (2). In water 1 has an absorption spectrum characteristic of a cross conjugated dienone³; λ 238 nm (log ε 4.15). However, in 71% perchloric acid or 94.7% sulfuric acid the absorption spectrum of 1 is radically different. In these acid solutions two new bands appear; λ 260 nm (log ε 4.12), λ 295 nm (log ε 3.57). These bands are characteristic of oxygen-protonated dienones as evidenced by a comparison of these results with the uv spectrum of the stable ion 3; λ 267 nm (log ε 4.12), λ 295 nm (log ε 3.56). The structure of 3 has been fully confirmed by nmr spectroscopy.^{1,4}

In concentrated acid solutions <u>l</u> rearranges smoothly to 3,4-dimethylphenol⁵ in a first order process (k_{obs}). The dependence of k_{obs} on acidity⁶ is consistent with a mechanism in which <u>2</u> is formed rapidly and reversibly followed by its rate-determining isomerization. According to the commonly-accepted mechanism⁷ of the dienone-phenol rearrangement, there are two possible rate-determining steps. One of these

involves rate determing methyl group migration (k_1) while the other requires base catalyzed deprotonation of 3 (k_2) . A clear distinction between these possibilities is possible through the use of kinetic deuterium isotope effects. If the rate determining step involves base catalyzed deprotonation of 2, a primary isotope effect of >2 is expected. On the other hand, rate determining methyl group migration should be accompanied by a small inverse isotope effect.

Accordingly, we have prepared 3-deuterio-4,4-dimethylcyclohexadienone (1d) and compared its rate of isomerization to that of 1. The results are collected in Table I.

Our results indicate that ld isomerizes slightly <u>faster</u> than 1; a result consistent only with k_1 rate determining at all acidities.

Some time ago Streitweiser et. al.⁸ suggested that α -deuterium isotope effects in solvolysis reactions ($k_{\rm H}/k_{\rm D} \approx$ 1.15) resulted from a decrease in the out-of-plane bending frequency of the α -hydrogen caused by rehybridization at the isotopic position attending the

Substrate	T (°C)	Wt % H ₂ SO ₄	$10^3 k_{obs}(min^{-1})$	$\frac{k_{\rm H}/k_{\rm D}^{\rm c}}{2}$
l la	25 .2 25 . 2	97.29% 97.29%	54.36 ± 0.85 ^a 58.58 ± 1.17 ^a	0.866 ± 0.041
1 1ª	25.8° 25.8	55.24% 55.24%	3.908 ± 0.049 ^b 4.206 ± 0.041 ^b	0.868 ± 0.039
^a Average an	d standard dev	viation of four r	runs	
^b Average and	d standard dev	viation of three	runs	
^c Calculated	from $k_{\rm H}/k_{\rm D}$	$= \frac{k_{\rm HH}/k_{\rm HD}}{2-(k_{\rm HH}/k_{\rm HD})}$	where $k_{HH} = k_{Obs}$	(1) and $k_{HD} = k_{obs}$ $(1d)$

Table I. Deuterium Isotope Effects in the Dienone-Phenol Rearrangement.

formation of the carbonium ion intermediate. The transformation of $\frac{2}{2}$ to $\frac{4}{2}$ is accompanied by the reverse hybridization change and should, therefore, proceed with an inverse isotope effect.⁹

It is interesting to note that the migration step remains wholly rate-determining even at very high acid concentrations where the water activity is low. The formation of the stable aromatic product probably provides the driving force which allows k_2 to exceed $k_{\tau 1}$ even at low water activities.

References

- 1. For paper I in this series see V. P. Vitullo, J. Org. Chem., 34, 224 (1969).
- The last step in the synthesis of 1 was kindly provided by Dr. J. Swenton, Ohio State University.
- 3. A. J. Waring, <u>Adv. Alicyclic Chem.</u>, <u>1</u>, 188 (1968).
- 4. E. C. Friedrich, J. Org. Chem., 33, 413 (1968).
- 5. In sulfuric acid, the product is that derived from sulfonation of 3,4-dimethylphenol.
- 6. A detailed discussion of the acidity dependence for this reaction will be given at a later date.
- 7. Ref. 3, p. 207.

- A. Streitwieser, Jr., R. H. Jagow, R. C. Fahey and S. Susuki, <u>J. Am. Chem. Soc.</u>, <u>80</u>, 2326 (1958).
- For a similar inverse isotope effect in the SCN⁻ catalyzed isomerization of maleic acid see S. Seltzer, <u>ibid.</u>, <u>83</u>, 1861 (1961).